Wednesday 13 February 2013

Security: Explosive breakthrough in research on molecular recognition

Feb. 12, 2013 ? Ever wonder how sometimes people still get through security with explosives on their person? Research done in the University of Alberta's Department of Chemical and Materials Engineering has revealed a new way to better detect these molecules associated with explosive mixtures.

A team of researchers including post-doctoral fellows Seonghwan Kim, Dongkyu Lee and Xuchen Liu, with research associate Charles Van Neste, visiting professor, Sangmin Jeon from the Pohang University of Science and Technology (South Korea), and Department of Chemical and Materials Engineering professor Thomas Thundat, has found a method of using receptor-free nanomechanical infrared spectroscopy to increase recognition of chemical molecules in explosive mixtures.

Detecting trace amounts of explosives with mixed molecules presents a formidable challenge for sensors with chemical coatings. The nanomechanical infrared spectroscopy used by the Univesity of Alberta research team provides higher selectivity in molecular detection by measuring the photothermal effect of the absorbed molecules.

Thundat, who holds the Canadian Excellence Research Chair in Oil Sands Molecular Engineering, says the spectroscopy looks at the physical nature of the molecule and "even if there are mixed molecules, we can detect specific molecules using this method."

Seonghwan (Sam) Kim explained that conventional sensors based on coatings generally cannot detect specific molecules in complex mixtures if the concentration of interfering molecules is five times greater than the target molecules. The detection sensitivity and selectivity are drastically increased using the high-power infrared laser because the photothermal signal comes from the absorption of infrared photons and nonradiative decay processes. Using this method, a few trillionths of a gram of explosive molecules can now be detected in a complex mixture even if there is a higher concentration of other interfering molecules.

The research team's findings are published in Scientific Reports by Nature Publishing Group on January 23, 2013.

The research team's current work looks at detecting biomolecules and hydrocarbons in the oil industry and nerve gas stimulants (DMMP), which can be found in household radiators, gasoline, and fabric softeners, for example. The team also hopes to develop a hand-held device for chemical detection that could be utilized in fields such as security, health care and environmental protection.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by University of Alberta. The original article was written by Nicole Basaraba.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Seonghwan Kim, Dongkyu Lee, Xunchen Liu, Charles Van Neste, Sangmin Jeon, Thomas Thundat. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser. Scientific Reports, 2013; 3 DOI: 10.1038/srep01111

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/~3/Ox1Gp-Et9W8/130212154623.htm

sweet potato recipes the sound of music celebration church new york auto show 2012 tulsa easter eggs pineapple upside down cake

No comments:

Post a Comment